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Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D F 07738, Mexico
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Abstract

The exact quantization rule is efficient for calculating the energy spectra of
all exactly solvable quantum systems. In this work, we calculate the energy
spectrum of the Schrödinger equation with the modified Rosen–Morse potential
by this quantization rule.

PACS numbers: 03.65.Ge, 03.65−w, 34.20.Cf

1. Introduction

It is well known that the study of exactly solvable problems has attracted much attention
since the early stage of quantum mechanics. The exact solutions of the Schrödinger equation
for a hydrogen atom and a harmonic oscillator in three dimensions are the milestones in
the development of quantum mechanics [1, 2]. Generally speaking, there are a few main
methods of studying the solutions of quantum systems. The first is the so-called traditional
method, that is, one solves the second-order differential equation to obtain the solutions of
quantum systems [3]. This can be realized by transforming the Schrödinger equation to some
ordinary differential equations, whose solutions are the special functions [2]. The second is
the algebraic method. This can be realized by studying the Hamiltonian of quantum system.
The latter is also related to the method of the supersymmetric quantum mechanics [4], further
closely related with the factorization method [5]. The third is a method based on an exact
quantization rule.

Recently, an exact quantization rule has been presented [6, 7] where there is a quantum
correction term which is found to be the same for all bound states of an exactly solvable
quantum system such that the energy levels of bound states can be calculated from the exact
quantization rule. This method is effective for all exactly solvable quantum systems such as the
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finite square well, the Morse potential and its generalization, the symmetric and asymmetric
hyperbolic-type Rosen–Morse potentials, the first and second Pöschl–Teller potentials, the
Hulthén potential, the harmonic oscillator and the hydrogen atom [6, 7]. Moreover, the
rotating Morse potential with the Pekeris approximation [8], the modified harmonic oscillator,
the Kratzer potential, the pseudoharmonic oscillator, the trigonometric Rosen–Morse potential
and others were carried out by this exact quantization rule [9–11]. On the other hand, a good
connection between this new quantization rule and the Langer correction has been established
[12]. The purpose of this work is to apply this quantization rule to calculating the energy
levels of the modified Rosen–Morse potential, which was not considered before.

This work is organized as follows. In section 2 the exact quantization rule is briefly
reviewed. We apply this method to calculating the energy levels of the modified Rosen–Morse
potential in section 3. Finally, some concluding remarks are given in section 4.

2. Exact quantization rule

We now give a brief review of this method [6, 7]. The one-dimensional Schrödinger equation
is given by

d2

dx2
ψ(x) = −2M

h̄2 [E − V (x)]ψ(x), (1)

where the potential V (x) is a piecewise continuous real function of the variable x. The
Schrödinger equation is equivalent to the Riccati equation,

d

dx
φ(x) = −2M

h̄2 [E − V (x)] − φ(x)2, (2)

where φ(x) = ψ(x)−1dψ(x)/dx is the logarithmic derivative of wavefunction ψ(x). As
said by Yang in a talk on monopole: ‘For the Sturm–Liouville problem, the fundamental
trick is the definition of a phase angle which is monotonic with respect to the energy.’ [13].
For the Schrödinger equation, the phase angle is the logarithmic derivative φ(x). From
equation (2), the φ(x) decreases monotonically with respect to x between two turning points,
where E � V (x). Specifically, as x increases across a node of wavefunction ψ(x), φ(x)

decreases to −∞, jumps to +∞ and then decreases again. This exact quantization rule was
shown [6, 7] for the one-dimensional Schrödinger equation as

∫ xB

xA

k(x) dx = Nπ + Q, Q =
∫ xB

xA

φ(x)

[
dk(x)

dx

] [
dφ(x)

dx

]−1

dx, (3)

k(x) =
√

2M[E − V (x)]

h̄
, E � V (x), (4)

where xA and xB are two turning points determined by E = V (x). N = n + 1 is the number
of nodes of φ(x) in the region E � V (x) and it is larger by one than the number n of
nodes of the wavefunction ψ(x). The first term Nπ is the contribution from the nodes of the
logarithmic derivative of the wavefunction, and the second is called the quantum correction Q.
It is found that, for all well-known exactly solvable quantum systems, this quantum correction
Q is independent of the number of nodes of the wavefunction such that Q can be calculated
from the ground state

Q = Q0 =
∫ xB

xA

φ0(x)

[
dk0(x)

dx

] [
dφ0(x)

dx

]−1

dx, (5)

2



J. Phys. A: Math. Theor. 42 (2009) 035303 X-Y Gu et al

where the subscription ‘0’ denotes the ground state. However, the momentum k(x) on the
left-hand side of the exact quantization rule (3) is concerned with the energy levels En. That is
to say, the energy levels of the exactly solvable system can be calculated simply from its ground
state. This exact quantization rule was also generalized to the three-dimensional Schrödinger
equation with a spherically symmetric potential [6, 7]. As what follows, we shall apply this
method to calculating the energy levels of the modified Rosen–Morse potential, which was
not studied before.

3. Modified Rosen–Morse potential

The modified Rosen–Morse potential [14] is given by

V (x) = −U0 − U1 sinh(x/a)

cosh2(x/a)
, −∞ < x < ∞. (6)

V (x) is the symmetrical Rosen–Morse potential if U1 = 0. It should be noted that the
q-deformed Rosen–Morse potential was considered by Grosche by using the path integral
method [15]. Since V (x) tends to zero as x goes to ±∞, the energy En of the bound state of
the system, if exists, has to be negative. Let

y = sinh(x/a), −∞ � y � ∞,
dy

dx
=

√
1 + y2

a
, V (x) = −U0 − U1y

1 + y2
.

(7)

The Riccati equation for the ground state is written in the new variable y as√
1 + y2

a

dφ0(x)

dy
= −2M

h̄2

[
E0 +

U0 − U1y

1 + y2

]
− φ0(x)2. (8)

Since the logarithmic derivative φ0(x) for the ground state has one zero and no pole, it has to
take the linear form in y. In addition, in order to meet the term with

√
1 + y2 in the Riccati

equation (8), φ0(x) can contain an additional factor (1 + y2)−1/2, which has no zero in the
domain of definition of y,

φ0(x) = − Ay + B

a
√

1 + y2
, A > 0. (9)

Substituting equation (9) into equation (8), one has

− A − By

a2(1 + y2)
= −2M[E0(1 + y2) + U0 − U1y]

h̄2(1 + y2)
− A2y2 + 2ABy + B2

a2(1 + y2)
. (10)

Letting G0 = 2A + 1, one has

E0 = −h̄2(G0 − 1)2

8Ma2
, B = 2Ma2U1

h̄2G0

G2
0 = 1 +

8Ma2U0

h̄2 + 4B2 = 1 +
8Ma2U0

h̄2 +

[
4Ma2U1

h̄2G0

]2

.

(11)

Then,

G2
0 = 1

2
+

4Ma2U0

h̄2 +

[(
1

2
+

4Ma2U0

h̄2

)2

+

(
4Ma2U1

h̄2

)2
]1/2

,

B = U1

|U1|

⎧⎨
⎩−1

8
− Ma2U0

h̄2 +

[(
1

8
+

Ma2U0

h̄2

)2

+

(
Ma2U1

h̄2

)2
]1/2

⎫⎬
⎭

1/2

.

(12)
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The turning points are solved from En = V (x)

yA = sinh(xA/a) = (−2En)
−1{−U1 −

√
U 2

1 − 4En(U0 + En)
}

yB = sinh(xB/a) = (−2En)
−1{−U1 +

√
U 2

1 − 4En(U0 + En)
}

yA + yB = U1/En, yAyB = 1 + U0/En.

(13)

Between two turning points, the momentum k(x) is expressed as

k(x) =
√−2MEn

h̄
√

1 + y2

√
(yB − y)(y − yA). (14)

We are now in the position to derive the energy spectrum in terms of the exact quantization
rule. During the calculation, the following integral formulae are useful:∫ xB

xA

dx√
(xB − x)(x − xA)

= π, (15)

∫ xB

xA

xdx√
(xB − x)(x − xA)

= π

2
(xA + xB) (16)

∫ xB

xA

x2dx√
(xB − x)(x − xA)

= π

8

(
3x2

A + 2xAxB + 3x2
B

)
(17)

∫ xB

xA

dx

(a + bx)
√

(xB − x)(x − xA)
= πλ√

(a + bxB)(a + bxA)
,

a + bx �= 0 when xA < x < xB, (18)

where λ = ±1 depends on the sign of a + bx.
The quantum correction Q0 in the exact quantization rule can be calculated for the ground

state

φ0(x)

dφ0(x)/dy
= − [(G0 − 1)y + 2B](1 + y2)

2By − (G0 − 1)
,

dk(x)

dy
=

√−2ME0

2h̄

(−2y + yA + yB)(1 + y2) − 2y(yB − y)(y − yA)

(1 + y2)3/2
√

(yB − y)(y − yA)

= −
√−2ME0

2h̄

(yA + yB)(y2 − 1) − 2(yAyB − 1)y

(1 + y2)3/2
√

(yB − y)(y − yA)

Q0 = a
√−2ME0

2h̄

∫ yB

yA

[(G0 − 1)y + 2B]

[2By − (G0 − 1)](1 + y2)

× [(yA + yB)(y2 − 1) − 2(yAyB − 1)y] dy√
(yB − y)(y − yA)

= a
√−2ME0

2h̄

∫ yB

yA

dy√
(yB − y)(y − yA)

{
(G0 − 1)(yA + yB)

2B

+
[(G0 − 1)2 − 4B2](yA + yB)/(2B) − 2(G0 − 1)(yAyB − 1)

2By − (G0 − 1)

+
2(yA + yB)y − 2(yAyB − 1)

(y2 + 1)

}
= I1 + I2 + I3. (19)
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Note that for the ground state

yAyB − 1 = U0

E0
,

yA + yB = U1

E0
= h̄2G0B

2Ma2E0
,

√
(yB + i)(yA + i) =

[
U0

E0
+ i

U1

E0

]1/2

,

(20)

and from equation (11)√
[2ByA − (G0 − 1)][2ByB − (G0 − 1)]

=
[

4B2

(
1 +

U0

E0

)
− 2BU1

E0
(G0 − 1) + (G0 − 1)2

]1/2

= 1√−E0

{
−E0[4B2 + (G0 − 1)2] + 4B2

[
h̄2G0(G0 − 1)

4Ma2
− U0

]}1/2

= 1√−E0

{
h̄2(G0 − 1)2

8Ma2

[
2G0(G0 − 1) − 8Ma2U0

h̄2

]

+

[
G2

0 − 1 − 8Ma2U0

h̄2

] [
h̄2G0(G0 − 1)

4Ma2
− U0

]}1/2

= 1√−E0

{
h̄2G2

0(G0 − 1)2

2Ma2
− 4U0G0(G0 − 1) +

8Ma2U 2
0

h̄2

}1/2

= h̄

a
√−2ME0

∣∣∣∣G0(G0 − 1) − 4Ma2U0

h̄2

∣∣∣∣ . (21)

Now, one is able to calculate the integrals I1, I2 and I3:

I1 = a
√−2ME0

4h̄

∫ yB

yA

dy
(G0 − 1)(yA + yB)

B
√

(yB − y)(y − yA)

= − h̄G0(G0 − 1)

4a
√−2ME0

∫ yB

yA

dy√
(yB − y)(y − yA)

= − πG0

2
. (22)

[(G0 − 1)2 − 4B2](yA + yB)/(2B) − 2(G0 − 1)(yAyB − 1)

= 1

−E0

{[
2(G0 − 1) − 8Ma2U0

h̄2

]
h̄2G0

4Ma2
+ 2(G0 − 1)U0

}

= 1

−E0

{
h̄2G0(G0 − 1)

2Ma2
− 2U0

}
, (23)

I2 = a
√−2ME0

2h̄

∫ yB

yA

dy · [(G0 − 1)2 − 4B2](yA + yB)/(2B) − 2(G0 − 1)(yAyB − 1)

[2By − (G0 − 1)]
√

(yB − y)(y − yA)

= ±π
a
√−2ME0

2h̄

1
−E0

{
h̄2G0(G0−1)

2Ma2 − 2U0
}

h̄

a
√−2ME0

{
G0(G0 − 1) − 4Ma2U0

h̄2

}
= ±π

2
. (24)

5



J. Phys. A: Math. Theor. 42 (2009) 035303 X-Y Gu et al

We are going to determine the sign of I2. When U1 = 0, from equation (11) one has
G2

0 = 1 + 8Ma2U0/h̄
2, and then

G0(G0 − 1) − 4Ma2U0

h̄2 = 1 +
4Ma2U0

h̄2 −
√

1 +
8Ma2U0

h̄2 > 0. (25)

When U1 = 0, the numerator of the integral of I2 is positive, but its denominator is negative
such that I2 < 0. Since I2 is a constant independent of U1, one has

I2 = −π

2
. (26)

The integral I3 is calculated as

I3 = a
√−2ME0

h̄

∫ yB

yA

dy
(yA + yB)y − (yAyB − 1)

(y2 + 1)
√

(yB − y)(y − yA)

= a
√−2ME0

h̄
Re

∫ yB

yA

dy
(yA + yB) − i(yAyB − 1)

(y + i)
√

(yB − y)(y − yA)

= ±π
a
√−2ME0

h̄
Re{−i

√
(yB + i)(yA + i)}

= ±π
a
√

2M

h̄
Re

√
U0 + iU1, (27)

where equation (20) is used. Letting U0 + iU1 = ρ eiϕ , where ρ =
√

U 2
0 + U 2

1 and
cos ϕ = U0/ρ, one has

Re
√

U0 + iU1 = √
ρ cos(ϕ/2) = √

ρ

√
1 + cos ϕ

2
=

√(
U 2

0 + U 2
1

)1/2
+ U0

2
. (28)

There is a sign confusion in I3 of equation (27) which comes from the square root. The
sign can be determined by the continuous condition. In fact, as shown in equation (27), I3 is
positive when U1 = 0 such that

I3 = aπ

h̄

√
M

[(
U 2

0 + U 2
1

)1/2
+ U0

]
. (29)

Under the assumption Q = Q0, one has from the exact quantization rule where N = n+1
for the nth excited state,∫ xB

xA

k(x) dx = − (G0 − 2n − 1)π

2
+

aπ

h̄

√
M

[(
U 2

0 + U 2
1

)1/2
+ U0

]
. (30)

On the other hand, one has∫ xB

xA

k(x)dx = a
√−2MEn

h̄

∫ yB

yA

√
(yB − y)(y − yA)

y2 + 1
dy

= a
√−2MEn

h̄

∫ yB

yA

−(y2 + 1) + (yA + yB)y − (yAyB − 1)

(y2 + 1)
√

(yB − y)(y − yA)
dy

= − π
a
√−2MEn

h̄
+ I4,

I4 = a
√−2MEn

h̄

∫ yB

yA

(yA + yB)y − (yAyB − 1)

(y2 + 1)
√

(yB − y)(y − yA)
dy

= a
√−2MEn

h̄
Re

∫ yB

yA

(yA + yB) − i(yAyB − 1)

(y + i)
√

(yB − y)(y − yA)
dy

6
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= π
a
√−2MEn

h̄
Re{−i

√
(yB + i)(yA + i)}

= π
a
√

2M

h̄
Re

√
U0 + iU1

= aπ

h̄

√
M

[(
U 2

0 + U 2
1

)1/2
+ U0

]
. (31)

The sign of I4 is determined by the same reason as the sign of I3. In comparison of
equations (30) and (31), one obtains

(G0 − 2n − 1)

2
= a

√−2MEn

h̄
. (32)

Then, G0 > 2n + 1 and

En = −h̄2 (G0 − 2n − 1)2

8Ma2
. (33)

This result coincides with the previous calculation given in [14], which checks that Q = Q0

is an invariant for the exactly solvable system.

4. Concluding remarks

We have calculated the energy levels of the Schrödinger equation with the modified Rosen–
Morse potential by this exact quantization rule. The logarithmic derivative φ0(x) of the
wavefunction for the ground state is explicitly solved from the Riccati equation. It is shown
that we need not use the exact eigenfunctions of this system to obtain the energy levels. In
contrast, for an exactly solvable quantum system, its energy levels can be calculated only from
the ground state. The calculation here and those in [6–12] show that this method is efficient
for all exactly solvable quantum systems.
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